Bend Minimization in Planar Orthogonal Drawings - Theory, Implementation and Evaluation
نویسندگان
چکیده
Minimizing the number of bends in orthogonal drawings of planar graphs is one of the major steps for improving the readability of the drawing. While the general problem is NP-hard if the embedding is not fixed, there exist multiple restrictions to the problem which make it solvable in polynomial time and thus relevant for actual use. This thesis focuses on two such approaches. 1. The decision problem FlexDraw with positive flexibility: Given a graph G = (V,E) and a function flex : E → N\{0}. Can G be drawn with at most flex(e) bends per edge? 2. The bend minimization problem OptimalFlexDraw for series-parallel graphs: Given a series-parallel graph G = (V,E) and for every edge e ∈ E a cost function coste : N0 → R. Find a drawing minimizing ∑ e∈E coste(bends(e)). In this thesis we implement and evaluate an algorithm solving the decision problem FlexDraw with positive flexibility. In the experimental evaluation we will discuss several questions, the most interesting of them being: How much bends do we need to allow in average, so that there exists a valid drawing? Since FlexDraw is a decision problem, its major disadvantage for practical use is that it will not generate any drawing if the instance does not admit one respecting the flexibility constraints given. One idea is to allow a flexibility of two on every edge, resulting in good but not optimal drawings. Thus, a demand for algorithms solving the optimization problem arise. We present a polynomial-time algorithm for OptimalFlexDraw for series-parallel graphs minimizing the bends, giving us more control over the output. Deutsche Zusammenfassung Eine wichtige Eigenschaft übersichtlicher orthogonaler Zeichnungen von Graphen besteht in einer möglichst geringen Anzahl Knicke auf den Kanten. Das allgemeine Problem der Knickminimierung sowie die Entscheidung, ob sich ein Graph knickfrei orthogonal zeichnen lässt, ist NP-schwer. Es gibt jedoch Ansätze, das Problem mit leichten Einschränkungen in Polynomialzeit zu lösen, welche für einen praktischen Einsatz relevant sind. Das Problem FlexDraw behandelt die Entscheidung, ob sich ein Graph mit einer pro Kante individuellen Maximalzahl an Knicken, welche echt positiv sein muss, zeichnen lässt. Das Optimierungsproblem OptimalFlexDraw minimiert in serienparallelen Graphen die Kosten verursacht durch Knicke, für welche jeweils eine individuelle Kostenfunktion angegeben wird. Wir stellen in dieser Arbeit einen Algorithmus vor, welcher das Problem OptimalFlexDraw für serienparallele Graphen in Polynomialzeit löst. Für das Entscheidungsproblem FlexDraw für allgemeine Graphen und echt positiver Flexibilität wurde im Rahmen dieser Arbeit eine Implementierung angefertigt, deren Algorithmus zunächst skizziert wird und welche wir im Anschluss vorstellen und evaluieren.
منابع مشابه
Capturing Lombardi Flow in Orthogonal Drawings by Minimizing the Number of Segments
Inspired by the artwork of Mark Lombardi, we study the problem of constructing orthogonal drawings where a small number of horizontal and vertical line segments covers all vertices. We study two problems on orthogonal drawings of planar graphs, one that minimizes the total number of line segments and another that minimizes the number of line segments that cover all the vertices. We show that th...
متن کاملHigher-Degree Orthogonal Graph Drawing with Flexibility Constraints
Much work on orthogonal graph drawing has focused on 4-planar graphs, that is planar graphs where all vertices have maximum degree 4. In this work, we study aspects of the Kandinsky model, which is a model for orthogonal graph drawings of higher-degree graphs. First, we examine the decision problem β-Embeddability, which asks whether for a given planar graph with a fixed or variable embedding, ...
متن کامل1-Bend Orthogonal Partial Edge Drawing
Recently, a new layout style to avoid edge crossings in straight-line drawings of non-planar graphs received attention. In a Partial Edge Drawing (PED), the middle part of each segment representing an edge is dropped and the two remaining parts, called stubs, are not crossed. To help the user inferring the position of the two end-vertices of each edge, additional properties like symmetry and ho...
متن کاملNon-planar Orthogonal Drawings with Fixed Topology
This paper discusses the calculation of bend minimal shapes for non-planar graphs with given topology. Based on the Simple-Kandinsky drawing standard – a simplification of the more complex Kandinsky standard – we show the disadvantage of using standard models for this task: We show that the minimal bend count is suboptimal, when these models are applied to non-planar graphs; it is therefore ben...
متن کاملAlgorithms for Area-eecient Orthogonal Drawings
An orthogonal drawing of a graph is a drawing such that nodes are placed on grid points and edges are drawn as sequences of vertical and horizontal segments. In this paper we present linear time algorithms that produce orthogonal drawings of graphs with n nodes. If the maximum degree is four, then the drawing produced by our rst algorithm needs area at most (roughly) 0:76n 2 , and introduces at...
متن کاملBend-optimal orthogonal graph drawing in the general position model
We consider orthogonal drawings in the general position model, i.e., no two points share a coordinate. The drawings are also required to be bend minimal, i.e., each edge of a drawing in k dimensions has exactly one segment parallel to each coodinate direction that are glued together at k − 1 bends. We provide a precise description of the class of graphs that admit an orthogonal drawing in the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012